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Abstract— We propose a class of computationally efficient
algorithms for conflict resolution in the presence of modeling
and measurement uncertainties. Specifically, we address a sce-
nario where a number of agents, whose dynamics are possibly
nonlinear, must cross an intersection avoiding collisions. First,
we solve the problem of checking membership in the set of states
for which there exists an input signal that avoids collisions for
any possible disturbance and measurement error. Then, we use
this solution to design a supervisor for collision avoidance which
is robust to disturbances and measurement uncertainties. We
obtain an exact solution and an approximate one with quantified
error bound and whose complexity scales polynomially with the
number of agents.

I. INTRODUCTION

The wide diffusion of partly or fully automated agents in
disparate engineering applications, from transport systems
to production lines, has made the coordinated control of
such agents a very interesting topic for control theory. The
problem of avoiding conflict configurations when human op-
erators are present in the control loop has proved especially
challenging, since this case presents the added constraint of
ensuring a conflict-free behaviour without restricting unnec-
essarily the human commands, casting the problem in the
form of a least restrictive supervisory control problem [15].
In the hybrid systems literature, this problem is typically
solved by computing the Maximal Controlled Invariant Set
[16], [11], [17], which is the largest set of states that admit
an input that avoids conflicts for all positive times. In this
paper, we design a least restrictive supervisor for collision
avoidance between a number of agents following intersecting
paths. Specifically, we consider a set of agents (such as cars,
trains, or airplanes) moving along predetermined paths that
intersect at a unique point. The conflict resolution problem
for this scenario has been solved in [6] for the case of
perfect information, and in the absence of any disturbance.
However, this is an unrealistic assumption in almost all
applications, where measurements are typically affected by
non-negligible levels of noise, and the dynamic model is
subject to uncertainties. Here, we overcome this limitation by
providing a solution that is robust to disturbance inputs and
measurement noise. Our solution is based on the computation
of the (open loop) Maximal Robust Controlled Invariant
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Fig. 1. Three agents must cross the intersection while avoiding collisions

Set, which is the largest set of states that admits an input
that avoids conflicts for all positive times and for any
admissible disturbance. This extension is nontrivial, since
the Maximal Robust Controlled Invariant Set is defined over
the power set of the state space, and the corresponding
properties must be verified for sets of trajectories, rather
than for single trajectories. The essential ingredients that
allow to obtain our result are a monotonicity and a uniform
continuity property of the system’s flow. Membership in the
Maximal Robust Controlled Invariant Set is computed by
recurring to a particular scheduling algorithm [13], [9]. By
this means, we can prove that our problem is NP-hard, but we
can also provide an approximate solution, with polynomial
complexity and provable error bound. Moreover, both exact
and approximate solutions are decidable [18], that is, they
can be computed in a finite number of steps. To simplify
the discussion, we present our result as the solution of two
separate problems, written in terms of a state estimate, that
is, a set of states compatible with the information available
at a given time.

1) Verification Problem: Given the initial state estimate
of a set of n agents moving along n different paths
crossing at an intersection, determine if there exists an
input signal that leads all agents through the intersec-
tion avoiding collisions, for all possible disturbances
and for all initial conditions in the initial state estimate.

2) Supervisor Problem: Design a supervisor that, given a
desired input, returns the desired input unless this may
cause a collision at some future time, in which case it
returns a safe input.

Notice that we assume that agents move along different
paths, and that all paths intersect at a common point, as in
Fig. 1. We first solve the Verification Problem both exactly
and approximately using an equivalent scheduling problem.
These solutions are then used to design the supervisor. The
paper is organized as follows. In Section 2, we define the
model and the notation; in Section 3, we introduce and solve
the Verification Problem; in Section 4, we introduce and



solve the Supervisor Problem; in Section 5, we present some
simulation results.

II. MODEL AND NOTATION

Consider the system

ẋ = f(x,u,d), xm = x + δ, y = h(x), (1)

where x is the state of n agents moving on n different
paths (such as in Fig. 1), xm is the measured value of x,
y is the vector of the positions of the agents along their
paths, u is a control input, and d is a disturbance input.
The measurement xm is affected by an uncertainty δ. (1) is
given by the parallel composition of n different systems that
describe the longitudinal dynamics of each agent:

ẋi = fi(xi, ui, di), xi,m = xi + δi, y = hi(xi), (2)

with xi ∈ Xi ⊆ Rr, δi ∈ ∆i ⊂ Rr, yi ∈ Yi ⊂ R, ui ∈ Ui ⊂
Rs, and di ∈ Di ⊂ Rs. Throughout the text, the symbols
xi, δi, yi, ui, and di will be used indifferently to denote
vectors (as above) and signals, that is, functions of time.
The correct interpretation will be clear from the context. The
value of xi at time t + t0, starting from xi(t0), with input
signals ui and di in [t0, t], is denoted xi(t, ui, di, xi(t0)).
When some of the arguments are inessential, they are simply
omitted. The same notation is used for y. The functional
space of the input signals ui(t) is Ui.

We assume that (1) has unique solutions and that systems
(2) are monotone [2], with R+ as the positivity cone of
yi. This means that, given the positivity cones Ki,x ⊂ Rr,
Ki,u ⊂ Rs, and Ki,d ⊂ Rs, if xi(t0) − x′i(t0) ∈ Ki,x,
ui(t)−u′i(t) ∈ Ki,u, and di(t)−d′i(t) ∈ Ki,d for all t ≥ t0,
then xi(t) − x′i(t) ∈ Ki,x and yi(t) − y′i(t) ∈ R+ for all
t ≥ t0. For a vector xi, we write xi ≤ x′i if xi − x′i ∈ Ki,x,
and xi ∈ [xa, xb] if xa ≤ xi ≤ xb. For a signal xi, we
write xi ≤ x′i if xi − x′i ∈ Ki,x for all t ≥ 0. The
same notation is used for all other variables. As we have
seen in (1), we assume that the state x is only imperfectly
measured and that the initial state estimate is an interval
[xai , x

b
i ] ⊂ 2Xi such that {xi ∈ Xi : xi ∈ [xai , x

b
i ]}. We write

[xa,xb] := [xa1 , x
b
1]× . . .× [xan, x

b
n]. We also assume that the

sets ∆i, Ui, and Di are compact, with a unique maximum,
δi,max, ui,max, and di,max, and minimum, δi,min, ui,min,
and di,min, respectively. Maxima and minima are intended in
the orders induced by Ki,x, Ki,u, and Ki,d, respectively. We
denote dmin the vector [d1,min, . . . , dn,min] and dmax the
vector [d1,max, . . . , dn,max]. We assume that ẏi is bounded
to a strictly positive interval [ẏi,min, ẏi,max] for all i. Finally,
we assume that there exists a nondecreasing function β such
that β(0, 0, 0) = 0 and

‖xi(t, ui, di, xi(t0))− xi(t, ui, d′i, x′i(t0))‖ ≤
β(t, ‖di − d′i‖, ‖xi(t0)− x′i(t0)‖) (3)

for all ui ∈ Ui, di, d′i ∈ Di, and xi(t0), x′i(t0) ∈ Xi. Note
that, if solutions exist for all t ≥ t0, this is equivalent to
assuming that (2) is incrementally forward complete [19].
From now on, given an initial state estimate [xai , x

b
i ], we use

yai (t, ui) to denote the position reached at time t with initial

state xai and disturbance input di,min, and ybi (t, ui) to denote
the position reached at time t with initial state xbi and dis-
turbance input di,max, i.e., yai (t, ui) := yi(t, ui, di,min, x

a
i )

and ybi (t, ui) := yi(t, ui, di,max, x
b
i ).

III. VERIFICATION PROBLEM

We assign to each agent an open interval (ai, bi), that
represents the span of the intersection along the agent’s path:
a collision occurs when two agents verify the conditions
yi(t) ∈ (ai, bi) and yj(t) ∈ (aj , bj) at the same instant t.
We call Bad Set the subset B ⊂ Y ⊆ Rn of collision points,
defined as:

B :=
{
y ∈ Y : yi ∈ (ai, bi) ∧ yj ∈ (aj , bj), for some i 6= j

}
.

The shape of this set changes based on the number of agents:
B is open and bounded for n = 2 but it becomes unbounded
for n > 2. In order to formalise the Verification Problem,
we use the concept of Maximal Robust Controlled Invariant
Set, MR:

Definition 1: A set S ⊂ X belongs to MR if and only if
there exists u ∈ U such that y(t,u,d,x(t0)) /∈ B for all t ≥
t0, for all x(t0) ∈ S, and for all signals d ∈ [dmin,dmax].
Notice that, while the literature on the Maximal Robust Con-
trolled Invariant Set [14] is based on closed loop maps, the
definition above refers to open loop controls. Note also that,
given an initial state estimate [xa,xb], the definition amounts
to having an input u ∈ U such that y(t,u,d,x(t0)) /∈
B for all t ≥ t0, for all x(t0) : xa ≤ x(t0) ≤ xb,
and for all signals d ∈ [dmin,dmax]. The approach we
follow consists in mapping the Verification Problem onto
an equivalent scheduling problem that we call Problem 1.
A scheduling problem consists in assigning to a number of
jobs one or more resources satisfying given requirements. In
this case, the intersection represents the resource, the agents
represent the job to be assigned to the resource, and the
time spent by each agent in the intersection is the length of
the job to be executed. We prove the equivalence rigorously.
In order to achieve this, we first have to introduce some
well known notions from the literature on Scheduling and
Computational Complexity Theory. The standard formalism
to describe a scheduling problem, introduced in [10], rep-
resents a problem by the string α|β|γ, where α describes
the resource environment (e.g. the number of machines), β
defines the jobs characteristics (e.g. the release time) and γ
defines the optimality criterion (e.g minimize the maximum
lateness Lmax). In the context of this paper, since we need
to determine whether or not a schedule exists, we focus on
decisions problems. In computational complexity theory a
decision problem P is a problem that has a binary answer
{yes, no} [9]. When P returns “yes” given an instance I , we
say that P accepts I , denoted I ∈ P . We use the notation
DEC(α|β|γ, δ) to represent the decision problem that returns
“yes” if α|β|γ has a solution with γ ≤ δ, otherwise it returns
“no”. This paper focuses on DEC(1|ri, pi = 1|Lmax, 0),
defined as follows

Definition 2: Given a set of n jobs to be run on a single
machine, with release times ri ∈ R+, deadlines di ∈ R+



and durations pi = 1, determine if there exists a schedule
T = [T1, . . . , Tn] ∈ Rn+ such that, for all i ∈

{
1, . . . , n

}
ri ≤ Ti ≤ di − pi,

and for all i 6= j

Ti ≥ Tj ⇒ Ti ≥ Tj + pj .
DEC(1|ri, pi = 1|Lmax, 0) has an exact O(n3)-time solu-
tion, reported in [9] and implemented in [6] by the procedure
POLYNOMIALTIME.
The concepts of reducibility and equivalence [7], [13] are
used when comparing the complexity of different problems.

Definition 3: A decision problem P1 is reducible to a
decision problem P2 if for every instance I of P1 an instance
I ′ of P2 can be constructed in polynomial-bounded time,
such that I ∈ P1 ⇔ I ′ ∈ P2. In this case, we write
P1 ∝ P2. Two problems P1 and P2 are equivalent, denoted
P1 ' P2, if P1 ∝ P2 and P2 ∝ P1.

A. Formalization of the Verification Problem and of Problem
1

We can now formally define the Verification Problem:

Verification Problem: Determine if [xa,xb] ∈MR.

An instance I of the Verification Problem
is described by the sets [xa,xb] and Θ :={
f ,h, X, U,U , D, Y, a1, . . . , an, b1, . . . , bn,dmin,dmax

}
.

To introduce Problem 1, for each agent we define
Ri := min

{
t ≥ 0 : ybi (t, ui,max) ≥ ai

}
and

Di := min
{
t ≥ 0 : ybi (t, ui,min) ≥ ai

}
. These two

quantities are, respectively, the minimum and maximum
time at which ybi (t, ui) can enter the interval [ai, bi]. Notice
that Ri and Di are always well defined, since (1) has
unique solutions and ẏi ≥ ẏi,min > 0. Also, for each agent
such that ybi (t0) < ai, given a real number Ti, we define
Pi(Ti) := inf

ui∈Ui

{
t : yai (t, ui) = bi

}
with the constraint

ybi (t, ui) ≤ ai for all t < Ti. If the constraint cannot be
satisfied, we set Pi := ∞; if [yai (t0), ybi (t0)] ∩ (ai, bi) 6= ∅,
we define Pi(Ti) :=

{
t : yai (t, ui,max) = bi

}
, and if

yai (t0) ≥ bi we define Pi(Ti) := 0. Pi(Ti) is the earliest
time an agent can leave the intersection, if it does not
to enter it before Ti. We can now define the following
scheduling problem.

Problem 1: Given [xa,xb], determine if there exists a
schedule T = [T1, T2, . . . , Tn] ∈ Rn such that, for all i

Ri ≤ Ti ≤ Di, (4)

and for all i 6= j

Ti ≥ Tj ⇒ Ti ≥ Pj(Tj). (5)

As for the Verification Problem, an instance I
of Problem 1 is described by [xa,xb] and Θ :={
f ,h, X, U,U , D, Y, a1, . . . , an, b1, . . . , bn,dmin,dmax

}
.

We can now proceed to show that the Verification Problem

and Problem 1 are equivalent. To prove it, we first introduce
the following lemma that is a consequence of monotonicity:

Lemma 1: Given xi(t0) ∈ [xai , x
b
i ], yai (t, ui) ≤

yi(t, ui, di, xi(t0)) ≤ ybi (t, ui) for all t ≥ t0 and for all
di ∈ [di,min, di,max].

Theorem 1: Verification Problem ' Problem 1
Proof: We have to prove that

I ∈ Verification Problem⇔ I ∈ Problem 1

1) I ∈ Verification Problem⇒ I ∈ Problem 1
Assume that [xa,xb] satisfies the constraints of the
Verification Problem. This means that there exists an
input that leads all the agents safely trough the intersec-
tion. We call that input ũ. The time instants at which
yb(t, ũ) crosses each of the planes yi = ai define a
vector T, and we can set Ti = 0 if ybi (t0) > ai.
Given the definition of Ri and Di, T satisfies (4).
Moreover, the time instants at which ya(t, ũ) crosses
each of the planes yi = bi define a vector P̃ and
let P̃i = 0 if yai (t0) > bi. Since ũ does not cause
collisions, for all i 6= j with Ti > Tj , ybi (t, ũi) enters
the intersection when yaj (t, ũj) has already left it. By
the definitions above, this means that for all i 6= j
Ti > Tj ⇒ Ti ≥ P̃j . Finally, P̃j ≥ Pj(Tj) since by
definition Pj(Tj) is the minimum time yaj (t, uj) can
exit the intersection if ybj(t, uj) does not enter earlier
than Tj . This implies that T satisfies (5).

2) I ∈ Verification Problem⇐ I ∈ Problem 1
Assume that the schedule T satisfies the constraints of
Problem 1 for a given [xa,xb]. Assume that ybi (t0) ≤
ai for all i and that Tn ≥ Ti for all i ∈ {1, . . . , n−1}.
To satisfy (5), Pi(Ti) must be finite for all i ∈
{1, . . . , n − 1}. By definition of Pi(Ti) there exists
an input ui(t) such that ybi (t, ui) ≤ ai for t < Ti
and yai (t, ui) = bi for t = Pi(Ti). Using ui, by
Lemma 1, each yi(t, ui, di) enters the interval (ai, bi)
no earlier than Ti and leaves the interval no later that
Pi(Ti). Moreover, (5) implies that the time intervals
(Ti, Pi(Ti)) do not intersect. Thus agents 1, . . . , n− 1
do not collide. Then, setting un(t) = un,min, we know
that ybn(t, un) ≤ an for all t ≤ Dn. By (4), Dn ≥ Tn
and by (5), Tn ≥ Pi(Ti) for all i ∈ {1, . . . , n − 1}.
Thus, by Lemma 1, when yn(t, un, dn) ∈ [an, bn],
yi(t, ui, di) ≥ bi for all i ∈ {1, . . . , n − 1}, hence
agents 1, . . . , n do not collide.
If for some systems ybi (t0) > ai, then Di = Ri = 0
and this implies Ti = 0. For agents with yai (t0) ≥
ai, by definition of Pi, we have that Pi(0) = 0 if
yai (t0) ≥ bi, otherwise Pi(0) > 0. Assume that agents
1, . . . , p − 1 have yai (t0) ≥ bi, that yap(t0) < bp and
that ybj(t0) < aj for all j ∈ {p + 1, . . . , n}. Agents
1, . . . , p− 1 do not collide because they have already
passed the intersection. Agent p has input such that
yap(Pp(Tp), up) = bp, so, by Lemma 1, yp(t, up) leaves
the intersection no later than Pp(Tp), and the agents



p + 1, . . . , n reach the intersection at t > Pp(Tp)
without collisions by the reasoning above.

B. Solution

The solution of Problem 1 and, as a results, of the
Verification Problem can be found using Algorithm 1.

Algorithm 1 ExactSolution
for all i ∈ {1, . . . , n} do

given [xai , x
b
i ] calculate Ri e Di

for all π ∈ P do
Tπ1 ← Rπ1

for i ∈ {2, . . . , n} do
Tπi
← max(Pπi−1

(Tπi−1
), Rπi

)

if Ti ≤ Di for all i ∈ {1, . . . , n} then
return {T, yes}

return {∅, no}

Given the set of initial conditions, Algorithm 1 calculates
R = [R1, . . . , Rn] and D = [D1, . . . , Dn]. The schedule is
then found, if one exists, testing all the possible permutations
of the n agents of the system. Since the cardinality of the
search space grows factorially in the number of agents n, so
does the running time of the algorithm; this is a problem if
the algorithm is to be run in real time. Note that a particular
subset of Problem 1, obtained for δ = 0 and d = 0 (i.e.,
in the absence of all disturbances), was proved in [6] to be
NP-hard by reduction of a standard scheduling problem. As a
consequence, Problem 1 is itself NP-hard, so even by refining
Algorithm 1 we cannot expect to significantly improve the
worst case performance.

To reduce the running time of the algorithm, we provide
an approximate solution to Problem 1.

Lemma 2: Assume that U is path connected. Then, if
yi(t0) < ai, for any Ti ∈ [Ri, Di] there exists a ui ∈ Ui
such that yi(Ti, ui, di,max) = ai.

Proof: By the continuity of hi in (2) and by the
continuous dependence trajectories on the input, yi depends
continuously on ui. Since yi(t0) < ai, ẏi > ẏi,min > 0 ,
and solutions are unique, {t : yi(t, ui, di,max) = ai} defines
a single-valued continuous map from the path connected set
Ui to [Ri, Di]. There is a path in Ui connecting the inputs
corresponding to Ri and Di, and the image of a continuous
path under a continuous map is a continuous path covering
the interval [Ri, Di].
From now on, we assume that U is path connected. Given
the initial state estimate [xa,xb], using (3) let

γi := β(Di, ‖di,max − di,min‖, ‖xbi − xai ‖). (6)

Then, for each i consider the set

Si := {[xai , xbi ] ∈ 2Xi : xai ≤ xbi , ybi = ai, ‖xbi − xai ‖ ≤ γi}.

This is the set of all the initial state estimates whose extrema
xai and xbi have distance less than γi, and whose upper corner

xbi is such that ybi = ai. We define

θmax := max
i∈{1,...,n}

sup
[xa

i (t0),x
b
i (t0)]∈Si

{
t : yai (t, ui,max) = bi

}
.

(7)

This is the minimum worst case time that the initial state
estimate will need to completely traverse the interval [ai, bi].

Lemma 3: Pi(Ti)− Ti ≤ θmax for all Ti ∈ [Ri, Di].
Proof: Consider the initial state estimate [xai , x

b
i ] at

time t = t0. If yai (t0) ≥ bi, Pi(Ti) = Ti = 0 and the proof
is trivial, so let us assume that yai (t0) < bi. Then, either
ybi (t0) ≥ ai and Ti ∈ [Ri, Di] = [0, 0] or, by Lemma 2, for
all Ti ∈ [Ri, Di] there exists a ui such that ybi (Ti, ui) = ai.
In both cases we can pick an input ui such that ybi (Ti, ui) ≥
ai, and by (6) and (3) ‖xbi (Ti, ui) − xai (Ti, ui)‖ ≤ γi. By
(7), applying the input ui,max for t ≥ Ti, we have that
yai (Ti+θmax, ui,max) ≥ bi. Thus, by the definition of Pi(Ti),
Pi(Ti)− Ti ≤ θmax

We use (7) to allocate the resource of the scheduling
problem – the intersection. This means that we are
considering the intersection occupied for more time then is
strictly needed by each agent. We are thus trading maximum
traffic flow for computational speed.
We now define the approximate scheduling problem:

Problem 2: Given [xa,xb], determine if there exists a
schedule T = [T1, T2, . . . , Tn] ∈ Rn such that, for all i

Ri ≤ Ti ≤ Di,

and for all i 6= j

Ti ≥ Tj ⇒ Ti ≥ Tj + θmax.

Any schedule that satisfies the constraints of Problem 2 also
satisfies the constraints of Problem 1, since by Lemma 3
Tj+θmax ≥ Pj(Tj). By normalizing the data of Problem 2 to
make θmax = 1, and then setting Ri = ri, Di = di−1, Ti =
ti, Problem 2 for agents with Ri, Di > 0 becomes formally
equivalent to DEC(1|ri, pi = 1|Lmax, 0), which is solved
in polynomial time by the procedure POLYNOMIALTIME in
[6]. Algorithm 2 solves Problem 2 treating separately agents
with ybi (t0) < ai and agents with ybi (t0) ≥ ai, for which
Ri = Di = Ti = 0 so that they do not contribute to the
combinatorial complexity of the problem. Without loss of
generality, in the algorithm we assume that ybi (t0) ≥ ai for
i ∈ {1, . . . ,m}, and that ybi (t0) < ai for i > m.

We now need to understand how good the solution is. To
do this, we want to find an upper bound to the overestimation
of the Bad Set due to Algorithm 2.

Lemma 4: For a given initial state estimate [xa,xb], take
an arbitrary u ∈ U , and define a schedule T as Ti = {t :
ybi (t, ui) = ai} for all i such that ybi (t0) < ai, and Ti = 0
for all other i. Assume that, for some i and j, ybi (t0) < ai,
ybj(t0) ≤ aj , Ti ≥ Tj , and Ti−Tj ≤ θmax, that is, two jobs



Algorithm 2 ApproximateSolution
for all i ∈ {1, . . . , n} do

given [xai , x
b
i ] calculate Ri e Di

if [yai (t0), ybi (t0)] ∩ (ai, bi) 6= ∅ for two different i ∈
1, . . . ,m then

return {∅, no}
for all i ∈ {1, . . . ,m} do

Ti ← 0

Rbound ← max{P1(t0), P2(t0), . . .}
for all i ∈ {m+ 1, . . . , n} do

Ri ← max(Ri, Rbound)

calculate θmax
r = (Rm+1/θmax, . . . , Rn/θmax)
d = (Dm+1/θmax + 1, . . . , Dn/θmax + 1)
{Tm+1, . . . , Tn, answer}=POLYNOMIALTIME(r,d)
for i from m+ 1 to n do

Ti ← Ti ∗ θmax
return {T, answer}

are scheduled within θmax of each other. Then

inf
x(t0)∈[xa,xb],d∈[dmin,dmax]

inf
t≥t0,b∈B

||y(t,u,d,x(t0))− b||∞ ≤

max
i∈{1,...,n}

ẏi,max

2

(
θmax − bi−ai

ẏi,max

)
.

Proof: To prove the lemma, it is sufficient to show that
inf

t≥t0,b∈B
||yb(t,u) − b||∞ ≤ max

i∈{1,...,n}

ẏi,max

2

(
θmax −

bi−ai
ẏi,max

)
. First, notice that the right hand side of the inequality

is always positive, since ẏi,maxθmax ≥ bi−ai. Let ẏmax :=
maxi ẏi,max, and ẏmin := mini ẏi,min. Any trajectory that
satisfies yi(Ti) = ai and yj(Tj) = aj must satisfy the three
following sets of inequalities: ∀t ≤ Tj :

{
yj(t) ≤ (t −

Tj)ẏmin+aj , yi(t) ≥ (t−Ti)ẋmax+ai, Tj−t ≤ aj−yj(t)
ẏmin

}
;

∀t ∈ [Tj , Ti] :
{
yj(t) ≤ (t − Tj)ẏmax + aj , yi(t) ≥

(t−Ti)ẏmax + ai

}
; and ∀t ≥ Ti :

{
yj(t) ≥ (t−Tj)ẏmin +

aj , yi(t) ≤ (t − Ti)ẏmax + ai, t − Ti ≥ yi(t)−ai
ẏmax

}
. By

removing the dependence on t of the above inequalities we
obtain the equation of the boundaries of the region containing
all such trajectories in the (yi, yj) plane. We conclude that
these trajectories lie between the curve of equations yj = (yi − ai)

ẏmin
ẏmax

+ aj + (Ti − Tj)ẏmin if yi ≤ ai, yj ≤ aj

yj = yi − ai + aj + (Ti − Tj)ẏmax if yi ≤ ai, yj ≥ aj

yj = (yi − ai)
ẏmax
ẏmin

+ aj + (Ti − Tj)ẏmax if yi ≥ ai, yj ≥ aj

and the curve of equations yj = (yi − ai)
ẏmax
ẏmin

+ aj + (Ti − Tj)ẏmax if yi ≤ ai, yj ≤ aj

yj = yi − ai + aj + (Ti − Tj)ẏmin if yi ≤ ai, yj ≥ aj

yj = (yi − ai)
ẏmin
ẏmax

+ aj + (Ti − Tj)ẏmin if yi ≥ ai, yj ≥ aj .

Now, since (Ti − Tj) ≤ θmax, by substituting this in the
two above sets of equations we obtain an upper and lower
bound of the region. Let S be the region enclosed by these

two bounds. The bound in the statement then follows from
taking inft≥0,b∈B,y∈S ‖y − b‖∞.

Theorem 2: If, for a given [xa,xb], Algorithm 2 returns
“no”, then

sup
u∈U

inf
x(t0)∈[xa,xb],d∈[dmin,dmax]

inf
t≥t0,b∈B

||y(t,x(t0),u,d)− b||∞

≤ max
i∈{1,...,n}

ẏi,max
2

(
θmax−

bi − ai
ẏi,max

)
.

(8)
Proof: Algorithm 2 returns “no” if [yai (t0), ybi (t0)] ∩

[ai, bi) 6= ∅ for two different i, or if POLYNOMIALTIME
returns “no”. In the first case the left hand side of (8)
is equal to 0 and (8) is verified. In the second case, if
POLYNOMIALTIME returns “no” then, for any schedule T
with Ti ∈ [Ri, Di] for all i, there exist i and j with
ybi (t0) < ai, ybj(t0) < aj , Tj ≤ Ti, such that Ti−Tj < θmax.
This is a consequence of the fact that POLYNOMIALTIME
solves DEC(1|ri, pi = 1|Lmax, 0) exactly. By the reasoning
above, for any u ∈ U , the schedule T defined by Ti = {t :
ybi (t, ui, di,max) = ai} if ybi (t0) < ai, Ti = 0 otherwise,
has Ti ∈ [Ri, Di] for all i, and satisfies the hypotheses of
Lemma 4. This completes the proof.

According to Theorem 2, if Algorithm 2 cannot find a
schedule that satisfies Problem 2, for all u ∈ U there exists
at least one x(t0) ∈ [xa,xb] and d ∈ [dmin,dmax] such that
y(t,u,d,x(t0)) intersects the Extended Bad Set, defined as
follows

B̂ :=

{
y : inf

b∈B
||y − b||∞ ≤

max
i∈{1,...,n}

ẏi,max
2

(
θmax −

bi − ai
ẏi,max

)}
.

(9)

IV. SUPERVISOR PROBLEM

We now formally introduce and solve the Supervisor
Problem. Our goal is to design a supervisor that keeps
the state estimate inside the Maximal Robust Controlled
Invariant Set using either the input chosen by the drivers,
called the desired input, if this does not cause a collision at
some future time, or a safe input.

A. Formalization

We call vk the desired input of the system at time kτ .
Then we consider the signal uk, defined over the interval
[kτ, (k + 1)τ ], that is equal to vk in the whole interval. We
call u∞k (t) the signal defined in t ∈ [kτ,+∞) so that, in
the interval [kτ, (k + 1)τ ], u∞k = uk. Consider also the
signal u∞k,s(t) (if it exists) such that ya(t,u∞k,s) /∈ B and
yb(t,u∞k,s) /∈ B for all t ≥ kτ , and let uk,s be the same
signal restricted to the interval [kτ, (k + 1)τ ]. Finally, we
design the one-step ahead predictor of the state of system
(1) {

xmaxpred(τ,u) := x(τ,u,dmax,x
b(kτ))

xminpred(τ,u) := x(τ,u,dmin,x
a(kτ)),

(10)



and the measurement error corrector that defines the initial
state estimate at time (k + 1)τ{
xa((k + 1)τ) = max(xminpred(τ,u),xm((k + 1)τ) + δmin)

xb((k + 1)τ) = min(xmaxpred(τ,u),xm((k + 1)τ) + δmax).
(11)

From here on, we denote by [xa(kτ),xb(kτ)] the initial
state estimate obtained at the k-th iteration of (10) and (11).

Supervisor problem: Given [xa(kτ),xb(kτ)], design a
supervisor s([xa(kτ),xb(kτ)],vk) : 2R

r × Rs → Rs for
system (1) such that (i)

s =


uk if ∃u∞k ∈ U :

[ya(t,uk),yb(t,uk)] ∩B = ∅
for all t ≥ 0

uk,s otherwise

and such that (ii) it is nonblocking: if u =
s[xa(kτ),xb(kτ)], νk) 6= ∅ then for any vk+1, k > 0,
s([xa((k + 1)τ),xb((k + 1)τ)],vk+1) 6= ∅.

B. Solution

Using the solution of the Verification Problem we can
solve the Supervisor Problem. We define, for all the agents
with ybi (t0) < ai, σi([x

a
i , x

b
i ], Ti) := arg inf

ui∈Ui

{
t :

yai (t, ui) = bi
}

with constraint ybi (t, ui) ≤ ai for t < Ti. If
[yai (t0), ybi (t0)] ∩ (ai, bi) 6= ∅, we define σi([xai , x

b
i ], Ti) :=

ui,max; otherwise, we define σi([x
a
i , x

b
i ], Ti) := 0. This is

the input ui(t) that allows agent i to exit the intersection no
later than t = Pi(Ti) not entering before Ti.

Algorithm 3 solves the Supervisor Problem using the
procedure ExactSolution in Algorithm 1.

Algorithm 3 SupervisorExact
uk(t) ← vk ∀t ∈ [0, τ ]
{T, answer}←
ExactSolution([xminpred(τ,uk),xmaxpred(τ,uk)])
if answer = yes and [ya(t,uk),yb(t,uk)]∩B = ∅ for all
t ∈ [0, τ ] then

u∞s,k+1 ← σ([xminpred(τ,uk),xmaxpred(τ,uk)],T)
us,k+1 ← u∞s,k+1 in [0, τ ]
return uk

else
{T, answer}←
ExactSolution([xminpred(τ,us,k),xmaxpred(τ,us,k)])
u∞s,k+1 ← σ([xminpred(τ,us,k),xmaxpred(τ,us,k)],T)
us,k+1 ← u∞s,k+1 in [0, τ ]
return us,k

We now prove that this algorithm solves the supervisory
problem.

Lemma 5: If there exists a schedule T that satisfies
the constraints of Problem 1 given [xa(kτ),xb(kτ)], then
σ([xa(kτ),xb(kτ)],T) 6= ∅.

Proof: The proof proceeds as the second part of the
proof of Theorem 1.

Lemma 6: If there exists a schedule T that satisfies the
constraints of Problem 1 given [xa(kτ),xb(kτ)], defining
u := σ([xa(kτ),xb(kτ)],T) 6= ∅, then there exists also a
schedule that satisfies the constraints of Problem 1 given the
new initial state estimate [xa((k + 1)τ),xb((k + 1)τ)].

Proof: The input u is well defined for Lemma
5. Let ũ be u restricted to the interval [(k + 1)τ,∞)
and call ỹa(t, ũ) := ya(t, ũ,dmin,x

a((k + 1)τ)) and
ỹb(t, ũ) := yb(t, ũ,dmax,x

b((k + 1)τ)). By Lemma
1, and since by (10) and (11) [xa((k + 1)τ),xb((k +
1)τ)] ⊆ [x(t, ũ,dmin,x

a(kτ)),x(t, ũ,dmax,x
b(kτ))], if

[ya(t,u),yb(t,u)] ∩ B = ∅ then [ỹa(t, ũ), ỹb(t, ũ)] ∩
B = ∅; in other words the new set of possible trajec-
tories defined from time (k + 1)τ applying ũ does not
enter in the Bad Set, therefore {[xa((k + 1)τ),xb((k +
1)τ)],Θ} ∈ Verification Problem. Since the Verification
Problem is equivalent to Problem 1, {[xa((k+1)τ),xb((k+
1)τ)],Θ} ∈ Problem 1.

Theorem 3: Assume that s([xa(0),xb(0)],v0) 6= ∅. Then,
the supervisor s([xa(kτ),xb(kτ)],vk) solves the Supervisor
Problem.

Proof: To prove (i), Algorithm 3 returns uk unless a
new schedule is not found. If this happens, the instance I /∈
Problem 1 and by Theorem 1, I /∈ Verification Problem.
Thus, by definition of the Verification Problem, there is no
ū∞k that is safe.
To prove (ii), we proceed by induction: assuming that
s([xa(0),xb(0)],v0) 6= ∅, we have to prove that if we
apply uout = s([xa(kτ),xb(kτ)],vk) 6= ∅ then s([xa((k +
1)τ),xb((k + 1)τ)],vk+1) 6= ∅. First of all, notice that
s([xa((k+1)τ),xb((k+1)τ)],vk+1) 6= ∅ unless us,k+1 6= ∅.
The argument of the procedure ExactSolution in Algorithm
3 is [xminpred((k + 1)τ,u),xmaxpred((k + 1)τ,u)] that is reached
either with an input u = uk or u = us,k. In the
first case, by Lemma 5 we are sure that σ([xminpred((k +
1)τ,u),xmaxpred((k + 1)τ,u)],vk+1) is not empty. In the sec-
ond case, by Lemma 6, a schedule exists and by Lemma
5, σ([xminpred((k + 1)τ,u),xmaxpred((k + 1)τ,u)],vk+1) is not
empty. Since, by (10) and (11), [xa((k + 1)τ),xb((k +
1)τ)] ∈ [xminpred((k+1)τ,u),xmaxpred((k+1)τ,u)], in both cases
σ([xa((k + 1)τ),xb((k + 1)τ)],vk+1) is not empty.

Due to its exponential complexity, Algorithm 3 cannot
be used in the presence of a large number of agents. We
could use Algorithm 2 instead of the procedure Exact-
Solution in Algorithm 3. This, however, would lead to a
blocking algorithm. To ensure nonblockingness, we modify
Algorithm 3 as detailed in Algorithm 4. To guarantee its
nonblockingness, the following strategy has been adopted:
if ApproximateSolution([xminpred((k + 1)τ,us,k),xmaxpred((k +
1)τ,us,k)]) returns “no”, the system keeps using the last safe
input calculated at the previous step until a new schedule
that satisfies the constraints of Problem 2 can be found.
Note that in this case Algorithm 4 is working in open-
loop until it finds a feasible schedule, since the procedure
ApproximateSolution does not return any value. We now
prove that Algorithm 4 is no more restrictive than Algorithm
3 defined using the Extended Bad Set in (9).



Theorem 4: Consider the Extended Bad Set defined in
(9). Call ŝ([xa(kτ),xb(kτ)],vk) the supervisor defined
in the Supervisor Problem substituting B̂ to B, and
call sapprox([xa(kτ),xb(kτ)],vk) the supervisor defined
by Algorithm 4. Then sapprox([xa(kτ),xb(kτ)],vk)
is no more restrictive than ŝ([xa(kτ),xb(kτ)],vk),
that is, if sapprox([xa(kτ),xb(kτ)],vk) = uk,s then
ŝ([xa(kτ),xb(kτ)],vk) = uk,s.

Proof: ExactSolution([xminpred((k + 1)τ),xmaxpred((k +
1)τ)]) in Algorithm 3 defined as in Theorem 4 returns “yes”
if there exists an input u that keeps y(t,u,d,x((k + 1)τ))
outside B̂ for all d ∈ [dmin,dmax] and for all x((k+1)τ) ∈
[xminpred((k+1)τ),xmaxpred((k+1)τ)]. By Theorem 2 and by (9),
ApproximateSolution([xminpred((k+1)τ),xmaxpred((k+1)τ)]) re-
turns “yes” if there is an input u that keeps y(t,u,d,x((k+
1)τ)) outside B̂. So sapprox([xa(kτ),xb(kτ)],vk) is no
more restrictive than ŝ([xa(kτ),xb(kτ)],vk).

Algorithm 4 SupervisorApproximate
uk(t) ← vk ∀t ∈ [0, τ ]
{T, answer}←
ApproximateSolution([xminpred(τ,uk),xmaxpred(τ,uk)])
if answer = yes and [ya(t,uk),yb(t,uk)]∩B = ∅ for all
t ∈ [0, τ ] then

u∞s,k+1 ← σ([xminpred(τ,uk),xmaxpred(τ,uk)],T)
us,k+1 ← u∞s,k+1 in [0, τ ]
return uk

else
{T, answer}←
ApproximateSolution([xminpred(τ,us,k),xmaxpred(τ,us,k)])
if answer = yes then

u∞s,k+1 ← σ([xminpred(τ,us,k),xmaxpred(τ,us,k)],T)
us,k+1 ← u∞s,k+1 in [0, τ ]
return us,k

else
u∞s,k+1 ← u∞s,k in [τ,+∞)
us,k+1 ← u∞s,k+1 in [0, τ ]
return us,k

V. NUMERICAL SIMULATIONS

Algorithms 3 and 4 have been tested numerically on the
following piecewise linear system. Assume that all the agents
are described by the same double integrator modeling the
longitudinal dynamics of a set of cars

ẋ1,i(t) = x2,i(t)

x1,i,m(t) = x1,i(t) + δ1(t)

ẋ2,i(t) = α(ui(t)± di(t))
x2,i,m(t) = x2,i(t) + δ2(t)

yi(t) = x1,i(t),

where the acceleration of agent i depends on the desired
input ui(t) and on the disturbance di(t). di accounts for the
disturbance and the rolling friction known with uncertainty,

while

α =

{
0 if x2 = ẏmin ∧ u < 0 ∨ x2 = ẏmax ∧ u > 0

1 otherwise

represents the speed saturation. The measurements x1,i,m(t)
and x2,i,m(t) are both affected by uncertainties. We
use for our simulation ui(t) ∈ [−2, 1] m/s2, ẏ(t) ∈
[1.39, 13.9] m/s, d(t) ∈ [0.15,−0.65] m/s2, δ1(t) ∈
[−3, 3] m, and δ2(t) ∈ [−1, 1] m/s. The intersection is
placed in a = 90 m and b = 100 m for all agents. We also
assume that all the drivers want to go as fast as possible and
that the supervisor takes its decision every 0.1 seconds.

Consider the case of 3 agents solved using Algo-
rithm 3. The initial conditions, x1,= [0, 0, 0] and x2 =
[13.9, 13.9, 13.9], are chosen so that, without the supervisor,
there will be a collision as they go at the same constant
speed. Fig. 2 shows the values at each time step of the real
position (in blue and red) and the position estimate (in grey).
Black lines define the intersection.
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Fig. 2. The real position (union of blue and red) and the position estimate
(in grey) of 3 agents over time. Blue lines indicate that the desired inputs
are used, red lines that the safe inputs are used.

The safe input maintains the state estimate of the system
always inside the Maximal Robust Controlled Invariant Set.
Thus the intersection between the position estimate of the
agents and Bad Set is always empty. Fig. 3 shows the Bad
Set (in yellow) and the position estimate (in blue and red)
in the space y1, y2, y3.

Fig. 3. The position estimate with 3 agents at every time step (blue and
red cubes) and the Bad Set (in yellow) in the space y1, y2, y3. When the
safe input is applied, the position estimate is depicted in red, otherwise in
blue.



We tested Algorithm 4 for a system composed of fifteen
agents, using the same parameters as in the simulation above
except for the position of the intersection which is placed in
a = 390 m and b = 400 m and the initial conditions x1 =
[130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 0] and
x2 = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]. Fig. 4 shows the
real position (in blue and red) and the position estimate
(in grey) of the agents over time. Black lines define the
intersection. We define β := ‖xbi (t0) − xai (t0)‖(1 + t) +
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Fig. 4. The real positions (union of blue and red) and the position estimate
(in grey) of 15 agents over time. Blue lines indicate that the desired inputs
are used, red lines that the safe inputs are used. All the agents are scheduled
using the fixed time θmax.

‖di,max−di,min‖t2
2 . In this case, θmax ≤ 13 s. The agents are

scheduled correctly: there are no collisions in the system, but
the time the intersection remains free is longer then the one
we obtained with Algorithm 3.

VI. CONCLUSION

We have addressed a class of conflict resolution problems
with imperfect state information and input uncertainties. By
means of an equivalence relation with a scheduling problem,
we have devised exact and approximate solution algorithms,
and we have used these algorithms to design a robust super-
visor. The scheduling approach was initially proposed in [6]
where, however, results were limited to the case of perfect
state information and absence of any disturbance. These
limitations have been removed. Our supervisor requires to
check the membership of a state estimate, consisting of a
hypercube of all possible current states, in the Maximal
Robust Controlled Invariant Set [14]. In the general case,
this kind of problem is known to be semi-decidable [18].
However, our results show that for the class of systems
considered here the problem is decidable, since the Algo-
rithms 3 and 4 are guaranteed to terminate in a finite number
of steps. Notice that our definition of the Maximal Robust
Controlled Invariant Set is based on an open loop control for
t ≥ 0. We could mitigate the effects of the disturbances by
using a feedback control, defining the input as a map of the
current state estimate. However, integrating such a feedback
control in our approach is not trivial for the general class of
systems that we consider here. Extensions in this direction
are currently being investigated. The present work is limited
to the case of agents travelling on different paths and a single
intersection. Most reasonable applications of the results, for

instance to collision avoidance at road traffic intersections,
require algorithms that can handle multiple agents on each
path and paths intersecting at multiple points. While there
are algorithms in the literature that can address these issues
[5], [4], [3], [12], [8], the scheduling approach proposed
here seems so far to be the only one to provide a robust
and least restrictive solution with provable error bound from
the optimum. Moreover, the approximate solution scales
polynomially with the number of agents involved, and can
thus be used to control a large number of agents. Extensions
of the scheduling approach to address multiple agents on
each path, and complex path topologies, are currently being
investigated.
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